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The ab initio calculation of intermolecular interactions requires a large basis set to describe systems with
dominant dispersion interaction accurately. This paper focuses on calculation of intermolecular bonding energies
of weakly bound systems within the supermolecular method and on issues related to the choice of a basis set
for these calculations, in particular size of the basis set, efficiency of 2-electron integral codes, basis set
superposition error (BSSE), and the linear dependence of basis functions. In an attempt to find more efficient
basis sets for calculations of intermolecular interactions, standard basis sets (10s Huzinaga, 6-311G**, cc-
pV6Z), or their parts, are extended (tessellated) by a set of off-centered, s or p functions, symmetrically
placed around the nuclei. Standard basis sets (10s Huzinaga, 6-311G**, cc-pVXZ, aug-cc-pVXZ, X) D, T,
Q, 5, 6) are also augmented by sets of atom-centered, higher angular momentum functions (p, d, f). The
distance from the nucleus of tessellating functions and orbital exponents of tessellating and augmenting functions
are optimized with respect to the BSSE-corrected bonding energy at the MP2 or UCCSD level of theory. The
two approaches are tested on the model systems with dominant dispersion interactions3H2, (CH4)2, and Ne2,
and their efficiency is compared. Both tessellation and augmentation are successful in describing the
intermolecular interactions of these model systems, with augmentation being more efficient. Our results draw
attention to the linear dependence problems inevitably present in accurate calculations and confirm the need
for underlying standard basis sets that provide good descriptions of core and valence electrons for the tessellation
and augmentation approaches to be reliable.

I. Introduction

Intermolecular interactions play a crucial role in understanding
a variety of phenomena involving solids, liquids and gases and
their accurate calculation is one of the major challenges for
today’s computational chemistry.

The calculation of intermolecular interactions usually focuses
on computing the properties of weakly bound systems, including
geometry, vibrational modes, and bonding energy. The quality
of such calculations is often measured by their ability to describe
the bonding energy properly. At the ab initio level, bonding
energy can be computed in two ways: (1) directly, as a sum of
physically distinct contributions from at least first and second-
order perturbation theory calculations;1 (2) as a difference
between the energy of monomers and the energy of the complex.
The second approach is also known as the supermolecular
method. Both approaches have their strengths and weaknesses
and are complementary rather than competitive.2 The advantage
of perturbational methods lies in the fact that the interaction
energy is calculated directly and not as a difference of two large,
almost identical numbers. Also, perturbational methods are free
from the basis set superposition error (BSSE), which is a major
problem in the application of the supermolecular method.
Despite this, the vast majority of calculations use the super-
molecular method because it is very simple and straightforward
and many standard quantum chemistry programs can be
employed in the calculations using this method. The supermo-
lecular method is, unlike perturbation approaches, also valid

for any distance between the subsystems and higher order terms
with respect to the interaction potential are implicitly taken into
account.

The main focus of this paper is computation of total bonding
energy for systems with dominant dispersion interaction (i.e.,
we are not interested in computing different components of
bonding energy such as induction or dispersion, but in the
bonding energy itself). Bonding energy is, unlike its components,
a quantity of direct chemical interest as it is an experimentally
accessible number. The supermolecular approach is used in all
our calculations due to its simplicity as well as widespread use,
and therefore further discussion will refer to the supermolecular
approach only.

Once a decision is made on which method to use to compute
the bonding energy (supermolecular or perturbational), one
needs to determine the appropriate theory level and basis set.
Some ab initio methods are more suitable for calculation of
intermolecular interactions than others. For example, Hartree-
Fock (HF) calculations completely miss the dispersion interac-
tion, which involves correlation between the electrons on
different molecules. Current density functional methods (DFT)
also fail to account for dispersion.3-5 HF and DFT methods
can be more successfully used for computations on systems in
which charge transfer or electrostatic interactions are dominant
(i.e., hydrogen bonded systems). To describe systems for which
dispersion plays an important role, methods that treat electron
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correlation at a higher level (e.g., configuration interaction,
coupled-cluster, or perturbational methods) are needed.

Most of the calculations of intermolecular interactions suffer
from the basis set superposition error (BSSE). This error was
first noted in the calculation of interaction of two ground-state
helium atoms.6,7 The basis functions of each monomer in the
supermolecular calculation are usually finite and far from
complete; therefore they use basis functions of the other
monomer to improve their energies. The lowering of monomer
energy lowers the total energy of the dimer; however, it has
nothing to do with the interaction energy one is trying to
calculatesit is a mere mathematical artifact. This artificial
lowering of the energy can be significantly largesof the order
of the interaction energy itself.

There has been a considerable amount of discussion about
the BSSE and the ways to correct it (see refs 8-12 and
references therein). The most widely accepted is the counterpoise
correction scheme,13,14 which is also used in our calculations.

Another problem associated with calculations of intermo-
lecular interactions is their remarkable dependence on the quality
of the basis set employed. One can argue that to obtain reliable
results, large basis sets of cc-pVTZ quality or better should be
employed in the calculations.15,16 Extensive polarization func-
tions (i.e., d shell for the first row atoms and p shell for
hydrogen) and diffuse functions must be included to describe
weakly bonded systems with reasonable accuracy.17-19 Many
researchers also use specially tailored basis sets designed to
reproduce monomer properties, such as polarizibilities,2,20-25

relevant to intermolecular forces. Some also augment standard
basis sets with functions optimized with respect to the bonding
energies26 or construct new interaction optimized basis sets.27

In addition, “bond-centered” basis functions located near the
midpoint of the van der Waals bond are also found effective in

recovering most of the interaction energy, even in the absence
of basis functions with excessively large angular momentum
quantum numbers.28-31

In 2000, Rappe´ and Bernstein proposed to supplement
standard basis sets with tessellated spherical Gaussians (TSG)
optimized for the calculation of intermolecular interactions.14

TSG functions consist of s basis functions placed at the vertexes,
faces or edges of an octahedron centered at the atom’s nucleus,
thus offering a better description of electron density away from
the nucleus as well as providing the higher angular momenta
components to the basis sets important for the proper description
of dispersion electron correlation events. Another reason behind
introducing TSG was a general belief that 2-electron integrals
over s basis functions are simpler and therefore faster to evaluate
than integrals over higher angular momentum functions. Thereby,
the extensive use of TSG should lead to substantial computa-
tional savings.

Use of basis functions not centered on nuclei but rather
allowed to “float” in space for computation of molecular
properties is an idea that dates back to 1950s, when Neumark
and Kimball first introduced a “free-cloud” approximation to
molecular orbital calculations.32,33 Their model has been ex-
tended by Frost, who employed floating spherical Gaussian
orbitals (FSGO) to represent a pair of electrons in a molecule,
with the radius and position of FSGO optimized to achieve
minimum energy.34 FSGO were later used in a similar manner
by Archibald et al.,35 Spangler et al.,36 and more recently by
Pakiari.37,38A different approach was adopted by Whitten, who
instead of explicitly using functions with higher angular
momentum (p, d, f, ...), reconstructed them from linear
combinations of off-centered Gaussian s-functions (“lobe-
functions”).39,40 Bond functions mentioned earlier are another
example of the use of the off-centered functions for the ab initio
calculations.

The aim of this work is to explore the viability of the
tessellation approach for the calculation of intermolecular
interactions and compare it with a more standard approach,
augmentation. Other issues pertaining to the calculation of
intermolecular interactions, such as BSSE and linear dependence
of the basis set, are also explored and discussed.

II. Method

Tessellated basis sets are composed of a standard, nucleus
centered, valence basis set (or a part of the set) and a set of s
or p functions centered away from the nuclei. To place these
functions around the nuclei, we use three different tessellation
patterns or “shells”. The first shell is created by placing s or p
functions at the vertexes of an octahedron centered at the atom’s
nucleus; we call this shell the “v” shell. The second shell of
functions, the “f” shell, is created by placing functions at the
centers of the eight triangular faces of the octahedron. The third,
“e” shell, places twelve functions in the middle of the
octahedron’s edges. Moreover, there can be more than one
function centered at the same point of space. See Figure 1 for
a graphical description of the shells.

Each shell of functions is characterized by its radial displace-
ment R from the nucleus and an orbital exponentø. Both of
these parameters are variationally hand-optimized to maximize
the BSSE-corrected intermolecular bonding energy.

Augmented basis sets are created by adding sets of p, d, or
f functions centered on nuclei to the standard basis sets. Their
orbital exponentsø are hand-optimized with respect to the
BSSE-corrected bonding energy.
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Geometries of dimers are kept fixed during the basis set
optimization and are shown in Figure 2. Bond distance for3H2

is 4.15 Å. The distance between Ne atoms in the dimer is 3.15
Å. Geometry of (CH4)2 is optimized at the MP2/cc-pVTZ level
of theory.

The optimization is done at the MP2 level of theory for Ne2

and (CH4)2 and at CISD (UCCSD) level of theory for3H2. The
GAUSSIAN 98 program41 and MOLPRO 2000.1 and 2002.642

are used to perform all computations. Bonding energies are
calculated using the supermolecular approach and the counter-
poise method is applied to account for BSSE.13

The following naming scheme is introduced for the basis sets
we developed. The main part of the name consists of the
standard basis set used for description of core and valence (i.e.,
6-311G**, Huz for a modified 10s Huzinaga basis set (see Table
1), and spd-cc-pV6Z for s, p, and d functions from cc-pV6Z
basis set). The prefix stands for the type of functions added to
the standard basis set: T for tessellated and A for augmented
functions. The suffix describes the angular momentum of
functions added: S, P, or D for adding a set of s, p or d
functions. In the case of tessellated basis sets, the subscript
further gives the tessellation pattern (v, f, or e shell) and the
number of functions centered at each position. For example,
T6-311G**Sv

2
f describes a 6-311G** basis set tessellated with

two sets of s functions centered at the vertexes of an octahedron
(both sets centered at the same position) and one set of s
functions centered in the faces of octahedron. AHuzP2D is
modified 10s Huzinaga basis set augmented with two sets of p
functions and one set of d functions.

Finally, it is important to note that all calculations are done
with basis sets consisting of spherical Gaussians (i.e., we use 5
functions for the d shell, 7 for the f shell, etc.), which is a default
choice in the MOLPRO program.

III. Results

3H2. We have extended (i.e., tessellated and augmented) two
standard basis sets for3H2: the modified 10s Huzinaga43 and
6-311G** basis set.44 The radial distance from the nucleus for
each tessellation shell and orbital exponents for tessellating, as
well as augmenting functions, are optimized at the UCCSD level
of theory with respect to the BSSE-corrected bonding energy.
Note that in the case of the modified 10s Huzinaga basis set
BSSE is of no concern, because the energy of the hydrogen
atom computed with this basis set is 0.499 999 3 hartree, which
suggests a maximal BSSE of 1.4µhartrees [1µhartree) 2.7211
× 10-5 eV ) 0.2195 cm-1 ) 2.6255× 10-3 kJ/mol) 6.2751
× 10-4 kcal/mol]. BSSE-corrected bonding energies and BSSE
for each optimized basis set are shown in Figures 3-6.

Both tessellated and augmented functions are able to recover
substantial amounts of the accepted bonding energy for3H2,
-19.52µhartrees.45 Tessellated 10s Huzinaga basis sets recover
between 59.2 and 100.4% of the accepted bonding energy,
whereas tessellated 6-311G** recover 74.5-105.7% of accepted
bonding energy.3H2 bonding energy computed with augmented
10s Huzinaga and augmented 6-311G** basis sets lies between
16.5 and 79.1% and between 55 and 92.1% of accepted bonding
energy, respectively. In the case of 10s Huzinaga and 6-311G**
basis sets, higher numbers of functions optimized for bonding
recover larger amounts of bonding energy irrespective of
whether they are augmenting or tessellating the basis set.
Interestingly, bonding energies computed with extended (tes-
sellated or augmented) 6-311G** basis sets recover larger
amounts of the bonding energy compared to the 10s Huzinaga
basis set tessellated or augmented with the same type and
number of functions.

Figure 1. Tessellation shells: A, v-shell, functions placed in the vertexes of octahedron; B, f-shell, functions placed in the faces of octahedron;
C, e-shell, functions placed in the middle of the octahedron’s edges.

Figure 2. Geometries of dimers used in study:3H2, Ne2, and (CH4)2.

TABLE 1: Exponents and Contraction Coefficients for the
Modified 10s Huzinaga Basis Set Used for the Hydrogen
Atom

exponents contraction coefficients

1776.77556 0.44000× 10-4

254.017712 0.37200× 10-3

54.6980390 0.20940× 10-2

15.0183440 0.88630× 10-2

4.91507800 0.30540× 10-1

1.79492400 0.90342× 10-1

0.71071600 0.213239
0.30480200 0.352350
0.13804600 0.339657
0.06215700 0.107330
1.79492400 1.0
0.71071600 1.0
0.30480200 1.0
0.13804600 1.0
0.06215700 1.0
0.0310800 1.0
0.0155400 1.0
0.0077700 1.0
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Ne2. We have extended (tessellated or augmented) s, p and
d functions from the cc-pV6Z46 and 6-311G** basis sets for
Ne2. All parameters are optimized at the MP2 level of theory
with respect to the BSSE-corrected bonding energy. The BSSE-
corrected bonding energy and BSSE for each optimized basis
set are shown in Figures 7-10.

As in the case of3H2, both tessellated and augmented basis
sets are able to recover substantial amounts of the Ne2 accepted
bonding energy (-134 µhartrees).47 Tessellated spd-cc-pV6Z
basis sets recover 38.9-61.1% of the accepted bonding energy,
whereas tessellated 6-311G** basis sets recover 19.3-75.6%
of the Ne2 bonding energy. Augmented basis sets recover
between 33.6% and 52.6% of the Ne2 accepted bonding energy
for spd-cc-pV6Z and between 51.4 and 72.44% for 6-311G**
basis sets. Again, with one exception, the higher number of
tessellating or augmenting functions recovers more bonding
energy, irrespective of the type of the extending function or
method employed. Tessellated and augmented 6-311G** basis

sets have substantially larger BSSE and recover more bonding
energy per shell than tessellated and augmented spd-cc-pV6Z
basis sets.

Note that the best available calculation for Ne2 at the MP2
level of theory employing the t-aug-cc-pVQZ′ basis set of
Woon16 recovers only 64% of the accepted bonding energy. To
approach Ne2 bonding energy more closely, one needs to use
the MP4 level of theory. Indeed, the MP4 calculation with
selected basis sets reveals further lowering of the bonding
energy: MP4/Tspd-cc-pV6ZPv lowers the bonding energy to
-108.08µhartrees from-72.05µhartrees at the MP2 level of
theory and MP4/T6-311G**Pv lowers the bonding energy from
-98.36 to-120.29µhartrees. Augmented basis sets behave in
a similar manner with respect to the MP4 calculations. This
shows the importance of using levels of theory higher than MP2
to obtain the correct description of the neon dimer interaction.

The BSSE-corrected bonding energy computed with 6-311G**
basis sets extended by more than 20 primitives at the MP2 level
of theory lies between-93 and-101µhartrees (70-76.5% of

Figure 3. Bonding energy for3H2 computed with the tessellated
modified 10s Huzinaga basis sets. Radial distance from nucleus and
the orbital coefficients for tessellating functions are optimized with
respect to the3H2 bonding energy. The letter labels indicate different
basis sets: A, modified 10s Huzinaga basis set, no tessellation; B,
THuzSv; C, THuzPv; D, THuzSv

2
f; E, THuz(SP)v.

Figure 4. Bonding energy for3H2 computed with the augmented
modified 10s Huzinaga basis sets. Orbital coefficients for augmenting
functions are optimized with respect to the3H2 bonding energy. The
letter labels indicate different basis sets: A, modified 10s Huzinaga
basis set, no augmentation; B, AHuzP; C, AHuzPD.

Figure 5. BSSE-corrected bonding energy and BSSE for3H2 computed
with tessellated 6-311G** basis sets. Radial distance from nucleus and
the orbital coefficients for tessellating functions are optimized with
respect to3H2 BSSE-corrected bonding energy. The letter labels indicate
different basis sets: A, 6-311G** basis set, no tessellation; B, T6-
311G**Sv; C, T6-311G**Svf; D, T6-311G**Pv; E, THuzSv

2
f; F, T6-

311G**Pvf; G, T6-311G**Pv
2
f.

Figure 6. BSSE-corrected bonding energy and BSSE for3H2 computed
with augmented 6-311G** basis sets. Orbital coefficients for augment-
ing functions are optimized with respect to3H2 BSSE-corrected bonding
energy. The letter labels indicate different basis sets: A, 6-311G**
basis set, no augmentation; B, A6-311G**P; C, A6-311G**PD.
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the accepted bonding energy). This indicates possible overes-
timation of the bonding energy with extended 6-311G** basis
sets. We attribute this to the approximate nature of the
counterpoise model and an undercorrection of the large BSSE
that arises with these basis sets.

(CH4)2. The first family of basis sets constructed for calcula-
tion of the bonding energy for (CH4)2 uses the 10s Huzinaga
basis set on hydrogen and s, p, and d functions from the cc-
pV6Z basis set on carbon. The second family of basis sets
consists of the 6-311G** basis sets on both carbon and hydrogen
atoms. Basis sets on carbon are extended with augmenting or
tessellating functions optimized for BSSE-corrected bonding
energy of the methane dimer at MP2 level of theory without
the presence of additional functions on hydrogen. We also
compute the bonding energy for the methane dimer using
extended functions on hydrogen which are optimized for the
bonding energy of3H2 and their combination with extended
functions on carbon. BSSE-corrected bonding energies and
BSSE for each of the basis sets are shown in Figures 11-14.

There are several experimental estimates of the methane dimer
bonding energy based on spherically averaged potentials
obtained from the fit of experimental data such as viscosity,
virial coefficients, and methane-methane scattering.48-50 The
bonding energy given by these empirical potentials lies in the
range of 574-797 µhartrees. All bonding energies computed
with extended basis sets containing 32 or more augmenting or
tessellating functions fall within this range. Extended basis sets
with 12 augmenting or tessellating functions recover between
56 and 79.9% of the average bonding energy given by empirical
potentials.

Interestingly, basis sets for (CH4)2 do not behave in the same
manner as the basis sets for3H2 and Ne2. First, a higher number
of basis functions does not always generate a larger energy
(although this general pattern is roughly followed in here too).
Second, bonding energies and BSSE computed with extended
10sHuz/spd-cc-pV6Z basis sets and 6-311G** basis sets are of
comparable size, with 10sHuz/spd-cc-pV6Z basis sets having
noticeably larger BSSE in certain cases. Third, the contribution

Figure 7. BSSE-corrected bonding energy and BSSE for Ne2 computed
with tessellated spd-cc-pV6Z basis sets. Radial distance from nucleus
and the orbital coefficients for tessellating functions are optimized with
respect to the Ne2 BSSE-corrected bonding energy. The letter labels
indicate different basis sets: A, spd-cc-pV6Z basis set, no tessellation;
B, Tspd-cc-pV6ZSv; C, Tspd-cc-pV6ZSvf; D, Tspd-cc-pV6ZPv; E, Tspd-
cc-pV6ZSv

2
f; F, Tspd-cc-pV6ZPvf; G, Tspd-cc-pV6ZPv2

f.

Figure 8. BSSE-corrected bonding energy and BSSE for Ne2 computed
with the augmented spd-cc-pV6Z basis sets. Orbital coefficients for
augmenting functions are optimized with respect to the Ne2 bonding
energy. The letter labels indicate different basis sets: A, spd-cc-pV6Z
basis set, no augmentation; B, Aspd-cc-pV6ZP; C, Aspd-cc-pV6ZPD.

Figure 9. BSSE-corrected bonding energy and BSSE for Ne2 computed
with the tessellated 6-311G** basis sets. Radial distance from nucleus
and the orbital coefficients for tessellating functions are optimized with
respect to Ne2 BSSE-corrected bonding energy. The letter labels indicate
different basis sets: A, 6-311G** basis set, no tessellation; B, T6-
311G**Sv; C, T6-311G**Svf; D, T6-311G**Pv; E, THuzSv

2
f; F, T6-

311G**Pvf; G, T6-311G**Pv
2
f .

Figure 10. BSSE-corrected bonding energy and BSSE for Ne2

computed with the augmented 6-311G** basis sets. Orbital coefficients
for augmenting functions are optimized with respect to Ne2 BSSE-
corrected bonding energy. The letter labels indicate different basis
sets: A, 6-311G** basis set, no augmentation; B, A6-311G**P; C,
A6-311G**PD.
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of MP4 to the bonding energy is not as significant as in the
case of Ne2. For example, the MP4 calculation with 6-311G**
on hydrogen and T6-311G**Pv basis set on carbon gives
-696.13µhartrees, whereas the MP2 level of theory with the
same basis set recovers-636.80 µhartrees for the methane
bonding energy.

In all calculations for3H2, Ne2, and (CH4)2 presented here,
tessellated basis sets are more linearly dependent than aug-
mented basis sets. The degree of linear dependence is usually
measured by the smallest eigenvalue of the overlap matrix

S (linear dependence is discussed in greater detail later in
this paper). In a few cases the difference is quite signifi-
cant: difference in the smallest eigenvalue between the tessel-
lated and augmented basis set using approximately the same
number of extending functions can be two to three orders of
magnitude.

Augmented Basis Set Choices for Ne2 and (CH4)2. Com-
paring the performance of tessellated and augmented basis sets
leads us to the conclusion that, at present, augmented basis sets
are more suited for calculation of intermolecular interactions.
In this section we will focus on augmentation, in particular,

Figure 11. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with the tessellated modified 10s Huzinaga basis set on
hydrogen and the spd-cc-pV6Z basis set on carbon. The radial distance
from nucleus and the orbital coefficients for tessellating functions on
carbon are optimized with respect to the (CH4)2 BSSE-corrected bonding
energy. Parameters of the tessellated 10s Huzinaga basis set are
optimized with respect to the3H2 bonding energy. The letter labels
indicate different basis sets: A, 10s Huzinaga/spd-cc-pV6Z basis set,
no tessellation; B, Huz/Tspd-cc-pV6ZSv; C, Huz/Tspd-cc-pV6ZPv; D,
THuzSv/spd-cc-pV6Z; E, THuzSv/Tspd-cc-pV6ZSv; F, THuzPv/spd-
cc-pV6Z; G, THuzPv/Tspd-cc-pV6ZPv.

Figure 12. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with the augmented modified 10s Huzinaga basis set on
hydrogen and the spd-cc-pV6Z basis set on carbon. Orbital coefficients
of augmenting functions on carbon are optimized with respect to the
(CH4)2 BSSE-corrected bonding energy. Parameters of augmenting
functions on hydrogen are optimized with respect to the3H2 bonding
energy. Basis sets C and D have the same number of tessellating
functions (24). The letter labels indicate different basis sets: A, 10s
Huzinaga/spd-cc-pV6Z basis set, no augmentation; B, Huz/Aspd-cc-
pV6ZD; C, AHuzP/spd-cc-pV6Z; D, Huz/Aspd-cc-pV6ZDF; E, AHuzP/
Tspd-cc-pV6ZD; F, AHuzPD/spd-cc-pV6Z; G, AHuzPD/Aspd-cc-
pV6ZDF.

Figure 13. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with the tessellated 6-311G** basis set on hydrogen and
carbon. The radial distance from the nucleus and the orbital coefficients
for tessellating functions on carbon are optimized with respect to the
(CH4)2 BSSE-corrected bonding energy. Parameters of tessellated 10s
Huzinaga basis set are optimized with respect to the BSSE-corrected
3H2 bonding energy. The letter labels indicate different basis sets: A,
6-311G**/6-311G** basis set, no tessellation; B, 6-311G**/T6-
311G**Sv; C, 6-311G**/T6-311G**Pv; D, T6-311G**Sv/6-311G**;
E, T6-311G**Sv/T6-311G**Sv; F, T6-311G**Pv/6-311G**; G, T6-
311G**Pv/T6-311G**Pv.

Figure 14. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with the augmented 6-311G** basis set on hydrogen and
carbon. Orbital coefficients of augmenting functions on carbon are
optimized with respect to the (CH4)2 BSSE-corrected bonding energy.
Parameters of augmenting functions on hydrogen are optimized with
respect to the BSSE-corrected3H2 bonding energy. Basis sets C and D
have the same number of tessellating functions (24). The letter labels
indicate different basis sets: A, 6-311G**/6-311G** basis set, no
augmentation; B, 6-311G**/A6-311G**D; C, A6-311G**P/6-311G**;
D, 6-311G**/A6-311G**DF; E, A6-311G**P/T6-311G**D; F, A6-
311G**PD/6-311G**; G, A6-311G**PD/A6-311G**DF.
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how to choose a basis set most suitable for augmentation. The
two main criteria this basis set should satisfy are (1) it should
provide a good description of the core and valence for the atoms
present, so it will not be unbalanced after augmentation and
(2) it should be as small as possible, so the calculation does
not take an excessively long time and the basis set can be applied
to larger systems (more than 3 or 4 first row atoms). Obviously,
the choice of such a basis set will require some compromises.
For example, the aug-cc-pV6Z basis set satisfies the first
criterion, but it is too large to be efficient. The STO-3G basis
set is small and fast; however, it does not provide a satisfactory
description of the core and valence, and augmenting it results
in an unbalanced basis set, leading to erroneous bonding energies
even after the application of a BSSE-correction scheme. To
illustrate this, we have augmented the STO-3G basis set with
one p function optimized with respect to the3H2 bonding energy.
The BSSE-corrected bonding energy obtained with this basis
set at the UCCSD level of theory is-66.82µhartrees, more
than 3 times the size of the accepted bonding energy for this
interaction,-19.52µhartrees.45 BSSE is 3631.60µhartrees.

We have tested a series of Dunning’s correlation consistent
basis sets51-54 as well as the 6-311G** basis set at the MP2
and LMP2 levels of theory for Ne2. Figures 15 and 16 show

bonding energies and BSSE computed with cc-pVXZ, aug-cc-
pVXZ (X ) D, T, Q, 5) and 6-311G** basis sets. Clearly, the
6-311G** basis set as well as the cc-pVXZ series are not
efficient in describing the interaction of Ne2. The aug-cc-pVXZ
family performs better, although even here larger basis sets are
required to describe the interaction with satisfactory accuracy.
Figures 17 and 18 show the results of MP2 calculations
performed with the same basis sets but with each basis set
augmented with a set of d and f functions optimized for the
Ne2 bonding energy. All of the augmented basis sets are able
to describe the Ne2 interaction, with the smallest basis sets (Acc-
pVDZDF, A6-311G**DF) overestimating the bonding energy.
Bonding energies and BSSE of these augmented basis sets
behave smoothly with increasing size of the basis set. In both
cases, the BSSE decreases with an increase in number of
functions. Bonding energies calculated with Acc-pVXZDF and
A6-311G**DF basis sets converge to the Ne2 bonding energy
from below and vary from-111.64 to-73.82µhartrees. It is

Figure 15. BSSE-corrected bonding energy and BSSE for Ne2

computed with the cc-pVXZ and 6-311G** basis sets at MP2 level of
theory. The letter labels indicate different basis sets: A, cc-pVDZ; B,
6-311G**; C, cc-pVTZ; D, cc-pVQZ; E, cc-pV5Z.

Figure 16. BSSE-corrected bonding energy and BSSE for Ne2

computed with the aug-cc-pVXZ basis sets at MP2 level of theory.
The letter labels indicate different basis sets: A, aug-cc-pVDZ; B, aug-
cc-pVTZ; C, aug-cc-pVQZ; D, aug-cc-pV5Z.

Figure 17. BSSE-corrected bonding energy and BSSE for Ne2

computed with the Acc-pVXZDF and A6-311G**DF basis sets at MP2
level of theory. Orbital coefficients of augmenting functions are
optimized with respect to the Ne2 BSSE-corrected bonding energy at
MP2 level. The letter labels indicate different basis sets: A, Acc-
pVDZDF; B, A6-311G**DF; C, Acc-pVTZDF; D, Acc-pVQZDF; E,
Acc-pV5ZDF.

Figure 18. BSSE-corrected bonding energy and BSSE for Ne2

computed with the Aaug-cc-pVXZDF basis sets at MP2 level of theory.
Orbital coefficients of augmenting functions are optimized with respect
to the Ne2 BSSE-corrected bonding energy at MP2 level. The letter
labels indicate different basis sets: A, Aaug-cc-pVDZDF; B, Aaug-
cc-pVTZDF; C, Aaug-cc-pVQZDF; D, Aaug-cc-pV5ZDF.
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far more common for systematic basis set enhancement to
converge to an answer from above. Convergence from below
is thought to be due to the approximate nature of the counter-
poise correction. Bonding energies computed with Aaug-cc-
pVXZDF basis sets (with the exception of Aaug-cc-pVQZ basis
set) converge to the bonding energy from above and vary
between-75.67 and-78.77µhartrees. Results obtained at the
LMP2 level of theory with the same basis sets are shown in
Figures 19 and 20. In all cases, LMP2 bonding energies lie
within 13 µhartrees of the MP2 bonding energies, most of them
being slightly lower than bonding energies computed at the MP2
level of theory. Bonding energies computed with Acc-pVXZDF
and A6-311G**DF basis sets still converge to the Ne2 bonding
energy from below, varying between-108.74 and-76.47
µhartrees. Bonding energies computed with Aaug-cc-pVXZ

basis sets are almost saturated, varying between-80.77 and
-82.38µhartrees.

We have also computed the methane dimer bonding energy
with several augmented and standard basis sets. The results are
shown in Figures 21 and 22. As in the case of Ne2, augmentation
with a set of d and f functions improves bonding energies and
the use of LMP2 substantially reduces the BSSE; nonetheless,
some differences exist for the two dimers. The A6-311G**DF
basis set performs better for the methane dimer than for Ne2, it
does not overestimate the (CH4)2 bonding energy, and its
absolute as well as relative BSSE is smaller. Calculation of the
(CH4)2 bonding energy with the Aaug-cc-pVDZDF basis set,
which is quite efficient for Ne2, shows a very large BSSE for
(CH4)2. LMP2 bonding energies lie within 120µhartrees of the
MP2 bonding energies, all higher than energies computed at

Figure 19. BSSE-corrected bonding energy and BSSE for Ne2

computed with the Acc-pVXZDF and A6-311G**DF basis sets at
LMP2 level of theory. Orbital coefficients of augmenting functions
are optimized with respect to the Ne2 BSSE-corrected bonding energy
at MP2 level. The letter labels indicate different basis sets: A, Acc-
pVDZDF; B, A6-311G**DF; C, Acc-pVTZDF; D, Acc-pVQZDF; E,
Acc-pV5ZDF.

Figure 20. BSSE-corrected bonding energy and BSSE for Ne2

computed with the Aaug-cc-pVXZDF basis sets at LMP2 level of
theory. Orbital coefficients of augmenting functions are optimized with
respect to the Ne2 BSSE-corrected bonding energy at MP2 level. The
letter labels indicate different basis sets: A, Aaug-cc-pVDZDF; B,
Aaug-cc-pVTZDF; C, Aaug-cc-pVQZDF; D, Aaug-cc-pV5ZDF.

Figure 21. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with a mixture of standard and augmented basis sets at MP2
level of theory. Orbital coefficients of augmenting functions on carbon
are optimized with respect to the (CH4)2 BSSE-corrected bonding energy
at MP2 level, hydrogen basis set is not augmented. The letter labels
indicate different basis sets: A- cc-pVDZ; B - 6-311G**; C - A6-
311G**DF; D - aug-cc-pVDZ; E- Aaug-cc-pVDZDF; F- cc-pVTZ;
G - aug-cc-pVTZ; and H- Aaug-cc-pVTZDF.

Figure 22. BSSE-corrected bonding energy and BSSE for (CH4)2

computed with a mixture of standard and augmented basis sets at LMP2
level of theory. Orbital coefficients of augmenting functions on carbon
are optimized with respect to the (CH4)2 BSSE-corrected bonding energy
at MP2 level, hydrogen basis set is not augmented. The letter labels
indicate different basis sets: A, cc-pVDZ; B, 6-311G**; C, A6-
311G**DF; D, aug-cc-pVDZ; E, Aaug-cc-pVDZDF; F, cc-pVTZ; G,
aug-cc-pVTZ; H, Aaug-cc-pVTZDF.
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the MP2 level of theory, which is opposite to the behavior for
Ne2 LMP2 bonding energies.

IV. Discussion

Overall, our calculations show that both tessellated and
augmented basis sets are able to describe bonding in the weakly
bound systems we tested:3H2, Ne2 and (CH4)2. The fraction
of recovered bonding energy in these dimers roughly scales with
the number of augmenting or tessellating functions, irrespective
of their type; however, tessellated basis sets have a larger BSSE
than augmented basis sets, and they are also more linearly
dependent. Additionally, augmented basis sets are much easier
to use in conventional electronic structure codes, because one
does not need to set up ghost centers for monomer and dimer
calculations. Augmented basis sets seem to be more desirable
and efficient for use in calculations of intermolecular interac-
tions.

In this section we discuss a number of general issues that
arise from the above studies of the calculation of intermolecular
interactions for3H2, Ne2, and (CH4)2. In so doing, we will focus
on tessellation and augmentation of basis sets, BSSE, and linear
dependence problems associated with basis sets.

Further Considerations on Tessellation. The original
proposal of the tessellation approach was motivated by the idea
that integrals over s functions are simpler and faster to evaluate
than those over the higher angular momentum functions.14

Therefore, one would expect that tessellating space around the
nucleus with a large number of s functions optimized to describe
intermolecular interactions rather than augmenting the nucleus
centered basis set with higher angular momentum functions
should result in substantial computational savings and make the
computation of intermolecular interactions more accessible.

This hypothesis has, however, two flaws. First, placing a
number of s basis functions in close proximity causes a severe
linear dependency problem. Second, although it is true that
individual two-electron integrals over s basis functions are
simpler and therefore faster to evaluate than a single two-
electron integral over functions with higher angular momentum,
this simplification does not obtain for the modern computation
of integrals involving large number of functions.

In modern two-electron integral codes, the calculation of
integrals is done in batches. An integral batch consists of all
the integrals for a unique combination of four shells. The number
of integrals in each batch depends on the number of functions
in each shell. For example, an (ss|ss) batch consists of only
one integral, a (dp|ds) batch has a total of 75 or 108 integrals
because it involves a d shell with 5 (or 6) components, a p shell
with 3 components and an s shell with 1 component. Calculation
of integrals in the batches allows for intermediate quantities to
be computed and reused for many integrals within the batch
avoiding their recalculation. This reduces the number of
arithmetic operations needed per uncontracted integral within
the batch and causes a relative increase in computational cost
for integrals involving low quantum numbers such as (ss|ss)
batches, because the cost of setting up each batch (which is
quantum number independent) is divided over 81 possible
integrals in a (pp|pp) batch but carried by only one integral in
an (ss|ss) batch.55

We have performed some timing tests using the computational
package Molpro 2000.1,42 which implements a very efficient
scheme for calculation of two electron integrals.56 As our testing
system we used the methane molecule with the modified 10s
Huzinaga basis set on hydrogen and s, p functions from the

cc-pV6Z basis set on carbon. We have augmented the carbon
and hydrogen basis sets with an increasing number of s, p, and
d functions and compared the timings for computation of two
electron integrals for these basis sets. For up to about 15
additional primitives, the angular momentum dependence of the
timing is insignificant. For more than 15 additional functions,
there is a clear impact of angular momentum. Up to about 30
additional functions, the time needed for calculation of two
electron integrals is smallest for basis sets augmented with p
functions, and longest for basis sets augmented with d functions.
For more than 30 additional functions, timings for basis sets
augmented with p functions were still the fastest, followed by
basis sets augmented with d functions, and finally basis sets
augmented with s functions. For example, for basis sets
augmented with 45 functions, the time for the computation of
two electron integrals for p augmentation functions was half
that of s functions.

Tessellation could still be viable if a specific (ss|ss) code were
implemented or if p functions were used for tessellation. More
efficient implementation of the s integral code or the use of p
functions instead of s functions might not, however, bring the
desired cost benefit because it seems that a relatively small
number of tessellating functions is able to recover a substantial
portion of the bonding energy. Moreover, one would still need
to deal with the significant linear dependency problem.

Another issue is the relationship between tessellating and bond
functions. Bond functions are auxiliary functions centered at
the bond midpoints added to standard basis sets to improve the
description of intermolecular interactions. The exponents of bond
functions are chosen to maximize the correlation contribution
to the bonding energy, but at the same time to keep the change
in the Hartree-Fock interaction energy minimal. A set of
{3s3p2d} bond functions with fixed exponents was found very
useful to describe bonding in a variety of van der Waals systems.
For a recent review of bond functions see ref 31.

The basic idea behind the use of tessellating functions is
therefore very similar to that of bond functions. Both are off-
centered and extend standard basis sets; however, some inherent
differences between the two approaches exist. For example, due
to their construction, bond functions cannot be associated with
a particular molecule or atom in the weakly bound complex, so
they cannot be used to describe bond dissociation potential
curves. Tessellating functions, on the other hand, are directly
associated with a particular atom. Also, because tessellating
functions are placed symmetrically around the nucleus, they do
not bias the basis sets in certain directions. To test whether each
of the tessellating functions makes a contribution to the dimer
bonding energy and not just those that extend in the bond
direction, we have run test calculation on Ne2 using portions of
the Tspd-cc-pV6ZPv basis set. Figure 23 shows the labeling
scheme and results are summarized in Table 2. Although the
functions in the bond region make a larger contribution to the
neon dimer bonding energy, other functions contribute as well.
The presence of these nonbond functions also somewhat reduces
the BSSE.

Figure 23. Ne2 with indicated positions of tessellating functions in
the vertexes of the octahedron.
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Augmentation. Augmenting standard basis sets with d and
f functions significantly improves computed bonding energies
of van der Waals sytems. LMP2 is effective in reducing BSSE,
and the reduction is most apparent with larger basis sets for
which BSSE arises primarily at the correlated level. It is difficult
to assess which of the standard basis sets is the most suited for
such augmentation in terms of the computational cost and quality
of the calculation. Among the basis sets tested, Aaug-cc-
pVDZDF is the most efficient for Ne2. For the methane dimer,
the A6-311G**DF basis set is the most efficient. Suitability of
a particular basis for one system does not imply the suitability
of this basis set for a different van der Waals system. For
example, although the A6-311G**DF basis set performs well
for the methane dimer, it would not be our first choice for Ne2

due to the overestimation of the Ne2 bonding energy. Therefore,
augmentation of medium-sized basis sets such as 6-311G** or
aug-cc-pVDZ should always proceed with caution, especially
when confronting a new system, one for which little or no data
are available. Use of aug-cc-pVTZ or larger basis sets is
desirable for more accurate results. If calculation with a larger
basis set is prohibitive, medium size basis sets can be quite
useful in obtaining qualitative insights into the behavior of new
systems.

Basis Set Superposition Error.Basis set superposition error
(BSSE) has been known for a long time to hamper the
computation of intermolecular interactions. BSSE arises from
incompleteness in the basis set of the monomers; in the dimer
calculation, monomers use each other’s basis functions to
improve their energies and thus artificially lower the energy of
the dimer. For a review of BSSE see refs 7 and 8 and references
therein.

Several schemes can be used to remove the BSSE from
calculations. A posteriori schemes (such as counterpoise cor-
rection) remove BSSE after the supermolecular calculation has
been completed, a priori schemes (e.g., Chemical Hamiltonian)
aim to remove the BSSE from the computational model. For
example, in the Chemical Hamiltonian approach (CHA), BSSE
effects are removed by modifying one-electron Hamiltonian in
a manner that ensures that the free monomer wave functions
remain unchanged in the extended basis set used for supermo-
lecular calculation.57,58 CHA has been successfully used at the
SCF, DFT and MP2 level of theory. The drawback of the
method is that the CHA Hamiltonian is non-Hermitian and its
applicability to different levels of theory is nontrivial.

Other examples of a priori schemes for removal of BSSE
are self-consistent field for molecular interaction for two and
multicomponent systems,59-61 the constrained dimer function
approach,62 the strictly monomer molecular orbital SCF ap-
proach,63 and the method of Muguet and Robinson that attempts

to remove BSSE using a specific localization scheme for
Hartree-Fock molecular orbitals.64

The most popular scheme for BSSE correction is the a
posteriori counterpoise (CP) correction proposed independently
by Jansen and Ross12 and Boys and Benardi.13 The basic idea
is to correct inconsistency in the basis set by using exactly same
set of functions for computation of monomer, as well as, dimer
properties; that is, calculation on one monomer is done in the
presence of basis functions of the other monomer. The complete
set of basis functions used for the calculation on a dimer is
often called the dimer centered basis set, and the set of basis
functions used for the monomer is called the monomer centered
basis set. CP correction scheme is in principle very simple and
applicable at any level of theory using conventional quantum
chemistry codes.

Much discussion is found in the literature concerning the
accuracy of the CP procedure and alternative approaches, such
as the virtual-only counterpoise procedure65 and a variety of a
priori approaches mentioned earlier, are suggested. Currently,
the CP procedure is widely accepted as a useful tool for
eliminating most of the BSSE, some even claim that the CP
correction rigorously eliminates BSSE in a supermolecular
calculation for closed-shell fragments.7 Our experience with
computing bonding energies of van der Waals dimers at the
MP2 level of theory with augmented and tessellated basis sets
suggests that although the CP correction is very accurate, it does
not necessarily remove BSSE completely. This is especially
noticeable in our calculations for Ne2 with tessellated and
augmented 6-311G** basis sets (see Figures 9 and 10). These
basis sets have very large BSSE compared to tessellated or
augmented spd-cc-pV6Z (Figures 7 and 8) with the same
number of extending functions. They also overestimate bonding
energies. This overestimation is caused by a portion of the BSSE
that is not corrected by the CP procedure. Counter to this
interpretation is the relatively large Tspd-cc-pV6ZPv

2
f basis set’s

MP2 BSSE of 846.37µhartrees and a bonding energy of-81.89
µhartrees, whereas the smaller A6-311G**DF basis set has a
MP2 BSSE of 513.54µhartrees and a bonding energy of-97.07
µhartrees. In this particular case, the basis set with smaller BSSE
overestimates the bonding energy whereas the basis set with
the larger BSSE does not. (Note that the best available
calculation on the MP2 level of theory gives-84.5 µhartrees
for the Ne2 bonding energy.16) Interestingly, a large part of the
BSSE for the A6-311G**DF basis set, about 300µhartrees,
arises at the Hartree-Fock (HF) level, whereas BSSE with the
Tspd-cc-pV6ZPv2

f basis set arises almost exclusively at the
correlated level (BSSE at HF level is 1µhartree). Therefore
we speculate that the large BSSE already present at the HF level
indicates an imbalanced basis set and a possible (very small)
undercorrection of BSSE by the CP procedure.

Another way to partially remove BSSE is to use local
correlation methods such as local MP2 (LMP2).66-69 Removal
of BSSE is a byproduct of these methods, their primary purpose
being the reduction of computational cost associated with the
treatment of electron correlation. Reduction in computational
cost is achieved in two ways: (1) pair correlation between the
distant orbitals is neglected (or, alternatively, this correlation
is treated at a lower level); (2) virtual space for a given pair is
restricted to a subset of atomic orbitals localized in the spatial
vicinity of the correlated pair. Restriction of the virtual space
also prevents basis functions located on distant centers from
contributing with their tails to improve basis set flexibility, and
as a result, the BSSE is reduced.70,71Although local correlation

TABLE 2: BSSE-corrected Bonding Energies and BSSE for
Ne2

a

tessellating functions used bonding energy (µh) BSSE (µh)

1-6, 1′-6′ -72.05 85.84
1, 1′ -67.96 152.39
1-5, 1′-5′ -71.84 96.37
2-5, 2′-5′ -56.25 31.06
2-6, 2′-6′ -59.00 33.95
6, 6′ -37.54 16.77
no tessellation -32.91 8.62

a Energies and BSSE are computed on MP2 level of theory with the
spd-cc-pV6Z basis set tessellated with p functions situated in different
positions of the vertexes of the octahedron. Numbers in the first column
denote tessellating functions present in the basis set; for more detailed
description, see Figure 23.
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methods will eliminate incremental BSSE arising at the cor-
related level, they do not impact HF level BSSE.

The positive effect of the LMP2 method on BSSE is also
confirmed in this work. Nine different basis sets, aug-cc-pVXZ,
aug-cc-pVXZ (X) D, T, Q, 5), and 6-311G**, are augmented
with a set of p and d functions optimized with respect to the
Ne2 intermolecular bonding energy at the MP2 level of theory.
Figures 17-20 show Ne2 bonding energies as well as BSSE
for these basis sets computed at the MP2 and LMP2 theory
level. The effect of LMP2 on bonding energy is relatively
smallsLMP2 bonding energies are between 97 and 119% of
MP2 bonding energies, indicating that augmented basis sets are
almost saturated with respect to the intermolecular interaction.
The impact of LMP2 on BSSE is significantsBSSE computed
with the LMP2 method is reduced to 5-78% of the BSSE
computed at the MP2 level of theory. LMP2 has an especially
favorable effect when used with the augmented aug-cc-pVXZ
series, in which BSSE is reduced to 5-18% of the BSSE
computed with MP2.

Similar results are obtained for a mixture of standard (cc-
pVDZ, 6-311G**, aug-cc-pVDZ, cc-pVTZ, aug-cc-pVTZ) and
augmented (A6-311G**DF, Aaug-cc-VDZDF, Aaug-cc-pVTZDF)
basis sets for the methane dimer. Figures 21 and 22 show
methane dimer bonding energy and BSSE computed at the MP2
and LMP2 levels of theory with the above basis sets. Two small
standard basis sets (cc-pVDZ, 6-311G**) experience a signifi-
cant reduction in bonding energy as well as BSSE: LMP2
bonding energy is 32-41% of the MP2 bonding energy and
LMP2 BSSE is 23-30% of the MP2 BSSE. Bonding energies
computed with all other basis sets are not significantly affected
(LMP2 recovers between 85 and 96% of the MP2 bonding
energy), whereas BSSE is substantially reduced (BSSE com-
puted at the LMP2 level of theory is between 9 and 53% of the
MP2 BSSE).

One could also mitigate BSSE by using large, almost
complete basis sets. Unfortunately, this approach is costly in
terms of the computational time that scales with the number of
basis functions N as N4 or N6 for correlated methodologies.
Moreover, this approach creates linear dependency problems
which are discussed next.

Linear Dependence.Calculations performed with large basis
sets, especially those containing diffuse functions or those with
several closely spaced sets of off-centered functions, often suffer
from numerical instabilities due to linear dependency (i.e., two
or more functions spanning almost the same physical space).
This problem has been known to arise for calculations on
periodic systems72 and calculations using a large set of bond
functions73 and is also observed for tessellated basis sets.

Two main problems exist for nearly linearly dependent basis
sets, one at the HF level and the other for correlated calculations.
Solution of the HF equations typically involves construction of
an orthogonalizing transformation matrixS-1/2 (S is an overlap
matrix). For near linear dependence in the basis set, eigenvalues
of the S matrix will approach zero and construction ofS-1/2

involves dividing by quantities that are nearly zero.S-1/2

becomes almost singular, leading to problems in numerical
precision. Near linear dependence also leads to very large
molecular orbital (MO) coefficients for virtual orbitals. This is
problematic for correlated calculations that require transformed
integrals. For example, if a MO coefficient is 1000, the product
of four such coefficients is 1012. Because two-electron integrals
are at best evaluated to an accuracy of 10-14, the transformed
integrals will have very large numerical errors and the resulting
energies may behave abnormally.

Only a few publications in the literature discuss linear
dependence or near linear dependence and the ways to avoid
it.72-74 The severity of this problem is usually measured by the
size of the smallest eigenvalue of the overlap matrixS. The
smaller the eigenvalue, the greater the linear dependence. Serious
numerical instabilities arise when the eigenvalues are of the
order 10-8 or smaller, although sometimes even larger eigen-
values (of the order 10-7 and 10-6) generate unreliable results
depending on the computational method used.

One way to deal with near linear dependence is to simply
omit one or more of the most diffuse basis functions from the
basis set, or alternatively omit linear combinations of basis
functions that correspond to small eigenvalues of the overlap
matrix. Some quantum chemical program packages (e.g.,
Gaussian) do this automatically for the user. This approach
works very well in most cases but can cause spurious results
when applied to the calculation of intermolecular interactions
using the supermolecular approach. To compute the bonding
energy by the supermolecular method, one usually computes
the energy of monomers using a monomer centered basis set
and the energy of dimer with dimer centered basis set. This
inconsistency in the basis is the cause of BSSE when one uses
unsaturated basis sets (see the discussion in the previous section)
and is usually not considered to be an issue in calculations using
large, almost saturated basis sets. If the basis sets used in a
computation are nearly linearly dependent, different linear
combinations of basis functions may be deleted from the
monomer and dimer centered basis sets making the calculation
inconsistent and the computed bonding energies no longer
reliable.

This problem can be somewhat alleviated by using the dimer
centered basis set for calculations on the monomer in the same
way one uses the dimer centered basis set to compute counter-
poise corrections. This ensures that the same basis set is used
in both monomer and dimer calculations and therefore that the
same linear combinations corresponding to small eigenvalues
of theSmatrix are deleted by the program. The bonding energy
computed from such a calculation might be smaller than
expected, because the basis functions removed by the program
are not completely redundant and do provide contribution to
the bonding energy of the system. Alternatively, one could turn
off the automatic removal of the basis functions by the program
and risk the unreliability of a numerically unstable calculation
resulting from the nearly linearly dependent basis set. Obviously,
it would be best to avoid using linearly dependent basis sets
altogether.

One is often tempted to believe that using faster computers,
parallel processing, larger disk space, and computer memory
will help push computational limits further, by enabling calcula-
tions at higher levels of theory with larger basis sets. In reality,
this is a rather oversimplified view. Gaussian basis sets that
have been used in quantum mechanical computations for the
past fifty years with great success suffer from one serious
shortcoming: a large number of Gaussian functions is required
to describe systems with high levels of accuracy, especially for
calculations of nonbonded interactions for which dispersion
plays an important role. For example, one of the most accurate
computations of (NH3)2 at the MP2 level of theory used 1024
basis functions.75 Our largest computation on methane dimer
with the Tspd-cc-pV6ZPv basis set on carbon and THuzPv basis
set on hydrogen uses a total of 466 primitives and the smallest
eigenvalue of theS matrix is 10-7. The methane dimer basis
set could still be extended to give a more accurate description
of the system, but due to the problems with linear dependence
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as well as the computational cost, we feel that using more than
500 primitives is not advisable. In general, due to the fact that
Gaussian basis functions are not orthogonal, increasing the
number of Gaussian functions in a basis set leads to near linear
dependency, which causes the computation to be numerically
unstable. We believe that learning how to deal with the problem
of linear dependence in the basis set, whether at the program-
ming level (by finding more efficient ways to treat numerical
instabilities) or modeling level (by discovering functions with
better spatial properties to replace Gaussians) is one of the
challenges computational chemistry faces in future years.

V. Conclusion

In this work the role of basis sets in ab initio calculations of
intermolecular interactions is explored. The focus of this study
is on three systems in which dispersion interactions dominate:
3H2, Ne2 and (CH4)2.

Standard basis sets are augmented and tessellated with
functions optimized with respect to the BSSE-corrected inter-
molecular bonding energy of each system. Relatively few
tessellating or augmenting functions recover a significant portion
of the intermolecular bonding energy. To obtain reliable results,
both tessellated and augmented basis sets require underlying
standard basis sets that provide a good description of the core
and valence electrons. Tessellated basis sets with a large number
of s functions do not offer an advantage in terms of the
computational speed in comparison with the use of higher
angular momentum atom-centered functions. Augmented atom-
centered basis sets are less linearly dependent and easier to work
with than tessellated basis sets, and therefore more desirable
for use in the calculations.

Our results further suggest that the counterpoise correction,
applied to the closed shell van der Waals clusters at the MP2
level of theory is very accurate, removing nearly all BSSE,
although it is not exact. LMP2 theory is efficient in removing
that portion of the BSSE that arises at the correlated level.

Linear dependence of the basis sets is a real problem for
accurate ab initio calculation of intermolecular interactions, and
we believe more attention needs to be focused on solving this
fundamental issue. Current approaches to eliminating linear
dependencies from basis sets do so by deleting a linear
combination of basis functions corresponding to the smallest
eigenvalues of the overlap matrixS.This approach inadvertently
causes supermolecular calculations to be inconsistent because
different combinations of functions may be deleted from
monomer and dimer basis sets. Therefore, it is recommended
that the same set of functions (i.e., the dimer centered basis
set) be used for calculations on both monomer and dimer, even
if the monomer basis set is saturated. Use of dimer centered
basis sets in all calculations will ensure the removal of the same
sets of functions for each calculation.

Overall, at present, no shortcut exists to reliable computation
of intermolecular interactions.
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